王思洋, 高铭
应用数学学报. 2023, 46(1): 88-100.
来源于不同总体的数据异质性较大,数据“零取值”较多且离散度大,可利用零膨胀泊松(ZIP)混合回归模型建模分析,然而混合模型中自变量较多.为了筛选出重要变量,本文利用自适应LASSO对ZIP混合回归模型进行变量选择,即在似然函数中加入惩罚项,再利用EM算法估计参数.通过模拟,验证了该方法在变量选择和参数估计中的有效性.同时,将ZIP混合回归模型应用于预测借贷失败次数的实际数据分析,筛选出对借贷失败有重要影响的因素.最后,通过比较各模型的预测效果,得到ZIP混合回归模型优于泊松(Poisson),负二项(NB)和ZIP回归模型.