中国科学院数学与系统科学研究院期刊网

1980年, 第3卷, 第1期 刊出日期:1980-03-15
  

  • 全选
    |
    论文
  • 刘振宏, 马仲蕃, 朱永津, 蔡茂诚
    应用数学学报. 1980, 3(1): 1-12. https://doi.org/10.12387/C1980001
    摘要 ( ) PDF全文 ( )   可视化   收藏
    F.Glover和D.Klingman在[2]中给出了予先确定的一个点x具有固定次数为k的最小树算法。本文给出了任意m个互不关联点具有次数限制的最小树问题的算法.算法的基础是线性规划的对偶理论。
  • 安鸿志, 成平
    应用数学学报. 1980, 3(1): 13-33. https://doi.org/10.12387/C1980002
    摘要 ( ) PDF全文 ( )   可视化   收藏
    近年来时间序列分析中的模型识别和参数估计方法(如[1-3]),得到了广泛的应用与发展。关于参数估计的渐近性理论研究,也随之被重视起来。所谓估计的渐近性,是指估计量随着样本长度不断增加时所具有的各种收敛性。很多文章(如[4-7])研究了滑动平均与自回归等模型参数估计的渐近性质。在这些文章中讨论了参数估计的依概率收敛性,几乎处处收敛性歹以及渐近正态分布性质。虽然也有文章提到渐近误差方差的性质,却没有给出过严格的证明与分析。
  • 徐光煇, 颜基义
    应用数学学报. 1980, 3(1): 34-40. https://doi.org/10.12387/C1980003
    摘要 ( ) PDF全文 ( )   可视化   收藏
    随机服务系统中研究得最多的是队长、等待时间和忙期这三个数量指标。但这三个指标不足以刻划系统的全面情况,为了对系统有更深入的了解,还需要考虑一些其它数量指标。本文引进了一种新的数量指标——首达时间,所谓首达上界时间,是指系统的队长首次达到某一上界所需的时间长度;所谓首达下界时间,是指系统的队长首次达到某一下界所需的时间长度。因此,这种指标刻划了系统达到不同拥挤程度所需的不同时间.对于M/G/1系统,我们研究了首达时间的概率规律,求出了它们的分布的明显表达式。
  • 陈天平
    应用数学学报. 1980, 3(1): 41-49. https://doi.org/10.12387/C1980004
    摘要 ( ) PDF全文 ( )   可视化   收藏
    关于用样条函数逼近连续函数,有不少文献和专著(如[1],[2])。关于误差估计,也有不少工作,亦有一些学者用高阶连续模对误差进行估计。
  • 周毓荣
    应用数学学报. 1980, 3(1): 50-56. https://doi.org/10.12387/C1980005
    摘要 ( ) PDF全文 ( )   可视化   收藏
    本文首先以不同于一般构造Bendixson区域境界线的方法[10],讨论允许两个收敛的情况,所得定理1使[2-6]等准则无法判定其极限环存在的方程得以判定。其次讨论(2)中积分允许三个及四个收敛的情况,证明了在某种条件下,(1)仍存在极限环。
  • 谢干权
    应用数学学报. 1980, 3(1): 57-71. https://doi.org/10.12387/C1980006
    摘要 ( ) PDF全文 ( )   可视化   收藏
    线性椭圆型方程有限元法的完整的数学基础是冯康先生于1965年最早提出的[1]。1968年以后的发展已有专著[2]。对于非线性椭圆型方程的研究,目前已有了若干工作[3-8]
  • 马毅林, 严擎宇
    应用数学学报. 1980, 3(1): 72-81. https://doi.org/10.12387/C1980007
    摘要 ( ) PDF全文 ( )   可视化   收藏
    调整型抽样方案在抽样检查的实践中已被广泛使用。关于调整型抽样方案复合特性的研究迄今主要有两类方法:一是借助于马尔可夫链的研究,另一是模拟试验。1967年,K.S.斯梯芬斯与K.E.拉尔逊在不考虑暂停检查,而仅考虑正常检查、加严检查和放宽检查的情况下,研究了美国军用抽样检查标准MIL-STD-105 D转移程序的复合特性[1]
  • 章照止
    应用数学学报. 1980, 3(1): 82-97. https://doi.org/10.12387/C1980008
    摘要 ( ) PDF全文 ( )   可视化   收藏
    由于卷积码的概率译码(序列译码和最大似然译码)的纠错能力胜过了现有的代数译码。因而引起了通信工程中应用卷积码编码系统的兴趣。选出最优卷积码是设计卷积码编码系统一定要遇到的问题。理论分析和试验都表明,自由距离可以作为卷积码性能的一个合理指标,它与译码误差有密切联系。此外列距离增长速度对序列译码计算量有很大影响。因此可以由这些量的大小来衡量卷积码的优劣。目前,由数学结构来得到最优卷积码的努力没有成功,加之距离计算又无解析公式。