带分布时滞的时间周期S-I型反应扩散传染病模型的传播性质

王双明

应用数学学报 ›› 2023, Vol. 46 ›› Issue (4) : 590-605.

PDF(560 KB)
PDF(560 KB)
应用数学学报 ›› 2023, Vol. 46 ›› Issue (4) : 590-605.
论文

带分布时滞的时间周期S-I型反应扩散传染病模型的传播性质

    王双明1,2
作者信息 +

The Spreading Properties of Time-Periodic S-I Reaction-Diffusion Epidemic Model with Distributed Delays

    Wang Shuangming1,2
Author information +
文章历史 +

摘要

利用渐近传播速度理论研究了一类带分布时滞的时间周期\S-I型反应扩散传染病模型具有紧支集初值的解的演化性质,由此可以解释新发传染病的地理传播现象.首先,对于疾病已入侵区域,利用一致持久性思想结合比较技巧分三步验证了模型系统的一致持久性,在此过程中,通过构造截断区间初边值问题解决了模型系数的周期性和时滞共同导致的关键困难.其次,通过构造单调方程并利用单调系统的传播速度理论和比较原理分析了宿主种群在疾病未入侵区域的演化性质.

Abstract

This work is devoted to study the evolution properties of the solutions with compactly supported initial data of a time-periodic S-I reaction-diffusion epidemic model with distributed delays by using the theory of asymptotic spreading speed, by which we can explain the geographic spreading phenomena of newly introduced diseases. Firstly, by applying the uniform persistence idea and comparison skill, and taking three steps, we prove the uniform persistence of the model system in the region where the disease has invaded. Along the way, the main difficulty caused by delay and the periodicity of the coefficients is solved by constructing initial boundary value problems posed on truncated intervals. Secondly, we analyze the evolution properties of the host population in the disease-free region by constructing monotone equation and further employing the spreading speed theory of monotone systems combining with the comparison principle.

关键词

时间周期 / 分布时滞 / 渐近传播速度 / 一致持久 / 比较原理

Key words

time-periodic / distributed delays / asymptotic spreading speed / uniform persistence / comparison principle

引用本文

导出引用
王双明. 带分布时滞的时间周期S-I型反应扩散传染病模型的传播性质. 应用数学学报, 2023, 46(4): 590-605
Wang Shuangming. The Spreading Properties of Time-Periodic S-I Reaction-Diffusion Epidemic Model with Distributed Delays. Acta Mathematicae Applicatae Sinica, 2023, 46(4): 590-605

参考文献

[1] 马知恩, 周义仓, 王稳地, 靳祯. 传染病动力学的数学建模与研究. 北京: 科学出版社, 2004(Ma Z E, Zhou Y C, Wang W D, Jin Z.Mathematical Modeling on the Dynamics of Infectious Diseases. Beijing: Science Press, 2004)
[2] Aronson D G, Weinberger, H F.Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation.In: Partial Differential Equations and Related Topics.Lecture Notes in Math., Vol. 446, Berlin: Springer, 1975, 5-49
[3] Aronson D G. Weinberger, H F.Multidimensional nonlinear diffusion arising in population genetics. Adv. Math., 1978(1), 39: 33-76
[4] Aronson D G.The asymptotic speed of propagation of a simple epidemic.In: Nonlinear Diffusion. Res. Notes Math., No.14, London: Pitman, 1977, 1-23
[5] Diekmann O.Run for your life. A note on the asymptotic speed of propagation of an epidemic. J. Differential Equations, 1979, 33(1): 58-73
[6] Ruan S G.Spatial-temporal dynamics in nonlocal epidemiological models. mathematics for life science and medicine.Biol. Med. Phys. Biomed. Eng., Berlin: Springer, 2007, 97-122
[7] Thieme H R., Zhao X Q.Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models. J. Differential Equations, 2003, 195(2): 430-470
[8] Liang X, Yi Y F, Zhao X Q.Spreading speeds and traveling waves for periodic evolution systems. J. Differential Equations, 2006, 231(1): 57-77
[9] Liang X, Zhao X Q.Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funct. Anal., 2010, 259(4): 857-903
[10] Fang J, Yu X, Zhao X Q.Traveling waves and spreading speeds for timespace periodic monotone systems. J. Funct. Anal., 2017, 272(10): 4222-4262
[11] Wang H Y.Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems. J. Nonlinear Sci., 2011, 21(5): 747-783
[12] Zhang L, Wang Z C., Zhao X Q.Propagation dynamics of a time periodic and delayed reaction-diffusion model without quasi-monotonicity. Trans. Amer. Math. Soc., 2019, 372(3): 1751-1782
[13] Ducrot A.Spatial propagation for a two component reaction-diffusion system arising in population dynamics. J. Differential Equations, 2016, 260(12): 8316-8357
[14] Ducrot A., Giletti T, Matano H.Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type. Calc. Var. Partial Differential Equations, 2019, 58(4): Paper No. 137, 34 pp
[15] Ducrot A, Giletti T, Guo J S, Shimojo M.Asymptotic spreading speeds for a predator-prey system with two predators and one prey. Nonlinearity, 2021, 34(2): 669-704
[16] Chen X F, Tsai J C.Spreading speed in a farmers and hunter-gatherers model arising from Neolithic transition in Europe. J. Math. Pures Appl., 2020, 143: 192-207
[17] Zhao L, Huo H F.Spatial propagation for a reaction-diffusion SI epidemic model with vertical transmission. Math. Biosci. Eng, 2021, 18(5): 6012-6033
[18] Wang X J, Lin G, Ruan S G.Spreading speeds and traveling wave solutions of diffusive vector-borne disease models without monotonicity. Proc. Roy. Soc. Edinburgh Sect. A, 2023, 153(1): 137-166
[19] Xin M Z, Wang B G.Spatial dynamics of an epidemic model in time almost periodic and space periodic media. Discrete Contin. Dyn. Syst. Ser. B, 2023, 28(2): 1159-1184
[20] Zhao L, Wang Z C. Zhang L.Propagation dynamics for a time-periodic reaction-diffusion SI epidemic model with periodic recruitment. Z. Angew. Math. Phys., 2021, 72: No.142, 20 pp
[21] Wang S M, Feng Z S, Wang Z C, Zhang L.Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure. Commun. Pure Appl. Anal., 2022, 21(6): 2005-2034
[22] Huang M D, Wu S L., Zhao X Q.Propagation dynamics for time-periodic and partially degenerate reaction-diffusion systems. SIAM J. Math. Anal., 2022, 54(2): 1860-1897
[23] Yang X Y, Lin G. Spreading speeds and traveling waves for a time periodic DS-I-A epidemic model. Nonlinear Anal. Real World Appl., 2022, 66: 103515, 27 pp
[24] Lin G.Spreading speeds and traveling wave solutions for a delayed periodic equation without quasimonotonicity. J. Dynam. Differential Equations, 2019, 31(4): 2275-2292
[25] Bai Z G, Zhang S L.Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay. Commun. Nonlinear Sci. Numer. Simul., 2015, 22(1-3): 1370-1381
[26] Hu H J, Zou X F.Traveling waves of a diffusive SIR epidemic model with general nonlinear incidence and infinitely distributed latency but without demography. Nonlinear Anal. Real World Appl., 2021: 58, 103224: 24 pp
[27] Zhao X.-Q.Basic reproduction ratios for periodic compartmental models with time delay. J. Dynam. Differential Equations, 2017, 29(1): 67-82
[28] Xu D S, Zhao X Q.Dynamics in a periodic competitive model with stage structure. J. Math. Anal. Appl., 2005, 311(2): 417-438

基金

国家自然科学基金(批准号:12171214), 甘肃省科技计划(批准号: 21JR7RA549), 兰州财经大学科研创新团队支持计划(批准号:202002)资助.
PDF(560 KB)

278

Accesses

0

Citation

Detail

段落导航
相关文章

/