利用Chapman-Kolmogorov等式和基本解矩阵、状态转移矩阵的概念,并结合Floquet理论,研究一类具有多变时滞的非线性中立型微分系统.首先,通过适当的积分变换得到系统解一个新的表达式.然后,利用Krasnoselskii不动点定理,给出了系统周期解的存在性,并在一定条件下构造适当的压缩映射得到该系统周期解的唯一性和零解稳定性的充分条件,改进了已有文献中的相应结果.
Abstract
By using the concepts of Chapman Kolmogorov equation, fundamental solution matrix and state transition matrix, and combining with Floquet theory, a class of nonlinear neutral differential system with delays are considered. Firstly, a new expression of the system solution is obtained by an appropriate integral transformation. Further, by using Krasnoselskii s fixed point theorem, the existence of periodic solutions for the system is given. Some sufficient conditions for the uniqueness of periodic solutions and stability of zero solutions are obtained by constructing an appropriate contractive mapping under certain conditions, which improve the corresponding results in the literature.
关键词
不动点定理 /
多变时滞 /
非线性微分系统 /
周期解 /
稳定性
{{custom_keyword}} /
Key words
fixed point theorem /
variable delays /
nonlinear differential system /
periodic solutions /
stability
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王丽娜,杨益民,赵烨.一类推广的森林模型波前解的稳定性.应用数学学报, 2017, 40(1):73-84 (Wang L N, Yang Y M, Zhao Y. Stability of Traveling Front Solutions for an Extended Forest Dynamical System. Acta Mathematicae Applicatae Sinica, 2017, 40(1):73-84)
[2] 李敏,赵东霞,毛莉.带有两个小世界联接的时滞环形神经网络系统的稳定性分析.应用数学学报, 2019, 42(1):15-31 (Li M, Zhao D X, Mao L. Stability Analysis of a Delayed Ring Neural Network with Two Small World Connections. Acta Mathematicae Applicatae Sinica, 2019, 42(1):15-31)
[3] 宋海涛,刘胜强.具有一般复发现象的疾病模型的全局稳定性.应用数学学报, 2017, 40(1):37-48 (Song H T, Liu S Q. Global Stability for Disease Model with General Relapse Phenomenon. Acta Mathematicae Applicatae Sinica, 2017, 40(1):37-48)
[4] Zhao J J, Xu Y, Liu M Z. Stability analysis of numerical methods for linear neutral Volterra delay-integro-differential system. Applied Mathematics and Computation, 2005, 167(2):1062-1079
[5] Vanualailai J, Nakagiri S I. Stability of a system of Volterra integro-differential equations. Journal of Mathematical Analysis and Applications, 2003, 281(2):602-619
[6] Boulares H, Ardjouni A, Laskri Y. Stability in delay nonlinear fractional differential equations. Rendiconti del Circolo Matematico di Palermo, 2016, 65(2):243-253
[7] Mesmouli M B, Ardjouni A, Djoudi A. Existence of periodic and positive solutions of nonlinear integro-differential equations with variable delay. Nonlinear Studies, 2015, 22(2):201-212
[8] Mesmouli M B, Ardjouni A, Djoudi A. Study of the periodic or nonnegative periodic solutions of functional differential equations via Krasnoselskii-Burton's theorem. Differential Equations and Dynamical Systems, 2016, 24(4):391-406
[9] Mesmouli M B, Ardjouni A, Djoudi A. Existence and uniqueness of periodic solutions for a system of nonlinear neutral functional differential equations with two functional delays. Rendiconti del Circolo Matematico di Palermo, 2014, 63(3):409-424
[10] Burton T A, Furumochi T. Krasnoselskii's fixed point theorem and stability. Nonlinear Analysis, 2002, 49(4):445-454
[11] Burton T A, Furumochi T. A note on stability by Schauder's theorem. Funkcialaj Ekvacioj, 2001, 44(1):73-82
[12] Islam M N, Raffoul Y N. Periodic solutions of neutral nonlinear system of differential equations with functional delay. Journal of Mathematical Analysis and Applications, 2007, 331(2):1175-1186
[13] Yankson E. Periodicity in a system of differential equations with finite delay. Caspian Journal of Mathematical Sciences, 2013, 2(2):147-157
[14] Mesmouli M B, Ardjouni A, Djoudi A. Periodic solutions and stability in a nonlinear neutral system of differential equations with infinite delay. Boletín de la Sociedad Matemática Mexicana:Tercera Serie, 2018, 24(1):239-255
[15] Althubiti S, Makhzoum H A, Raffoul Y N. Periodic solution and stability in nonlinear neutral system with infinite delay. Applied Mathematical Sciences, 2013, 7(136):6749-6764
[16] Mesmouli M B, Ardjouni A, Djoudi A. Periodicity and non-negativity of solutions for nonlinear neutral differential equations with variable delay via fixed point theorems. Mathematical Methods in the Applied Sciences, 2016, 39(11):2840-2852
[17] Mesmouli M B, Ardjouni A, Djoudi A. Study of the stability in nonlinear neutral differential equations with functional delay using Krasnoselskii-Burton's fixed-point. Applied Mathematics and Computation, 2014, 243(4):492-502
[18] Chicone C. Ordinary differential equations with applications. New York:Springer, 1999:151-152
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(61773128)和2022年广州城建职业学院校级科研项目-自然科学项目(编号:2022ZKY10)成果资助.
{{custom_fund}}