该文研究了一类具有空间异质性HIV潜伏感染的非局部扩散动力学模型. 克服了非局部算子引起的非紧性困难并利用更新方程得到了下一代再生算子的泛函表达式, 进而得到模型基本再生数, 即下一代再生算子的谱半径. 然后对系统进行阈值动力学分析. 具体地, 通过构造合适的Lyapunov泛函证明了当时, 未感染平衡态是全局渐近稳定的; 利用点耗散系统的一致持久性理论证明了当时, 系统是一致持久的并且系统至少存在一个正平衡态.
Abstract
In this paper, a nonlocal dispersal dynamic model of HIV latent infection with spatial heterogeneity is studied. We overcome the difficulty of non compactness caused by the nonlocal dispersal operator, and obtain the functional expression of the next generation operator by using the renewal equation. Then, the basic reproduction number of the model is obtained, which is defined by the spectral radius of the next generation regeneration operator . Finally, the threshold dynamics of the system is analyzed. Specifically, by constructing appropriate Lyapunov functional, it is proved that the uninfected steady state is globally asymptotically stable when ; Applying the consistent persistence theory of point dissipative systems, we prove that the system is uniformly persistent and has at least one positive steady state when .
关键词
HIV /
潜伏感染 /
非局部扩散模型 /
空间异质性 /
下一代再生算子 /
阈值动力学
{{custom_keyword}} /
Key words
HIV /
latent infection /
nonlocal dispersal model /
spatial heterogeneity /
the next generation operator /
threshold dynamics
{{custom_keyword}} /
中图分类号:
O175
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Levi J. HIV and the pathogenesis of AIDS. Washington, D.C.: ASM Press, 2007
[2] 邓萌,徐瑞.一类具有CTL免疫反应和免疫损害的HIV感染动力学模型的稳定性分析.数学物理学报,2022, 42A(5):1592-1600(Deng M, Xu R. MenStability analysis of an HIV infection dynamic model wit CTL immune response and immune impairment. Acta Math Sci, 2022, 42A (5): 1592-1600)
[3] 娄洁,马之恩,邵一鸣.HIV-1的表型间变异与免疫因子相互作用的动力学模型.数学物理学报,2007,27A(5): 898-906(Lou Jie, Ma Zhien, Shao Yiming. Modeling the Interaction s between the HIV-1 Phenotypes and the Cytokines. Acta Math Sci, 2007, 27A(5): 898-906)
[4] Wu P, Zhao H. Dynamics of an HIV infection model with two infection routes and evolutionary competition between two viral strains. Appl. Math. Model, 2020, 84: 240-264
[5] Rong L, Feng Z, Perelson A S. Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy. SIAM J Appl Math, 2007, 67: 731-756
[6] 吴鹏,赵洪涌,基于空间异质反应扩散HIV感染模型的最优治疗策略.应用数学学报,2022,45(5):752-766
[7] Wang W, Wang X N, Feng Z S. Time periodic reactionõdiffusion equations for modeling 2-LTR dynamics in HIV-infected patients. Nonlinear Anal RWA, 2021, 57: 103184
[8] Wu P, Zheng S, He Z R. Evolution dynamics of a time-delayed reactionõdiffusion HIV latent infection model with two strains and periodic therapies. Nonlinear Anal RWA, 2022, 67: 103559
[9] Vaidya N.K., Rong L. Modeling pharmacodynamics on HIV latent infection: choice of drugs is key to successful cure via early therapy. SIAM J Appl Math, 2017, 77: 1781-1804
[10] UNAIDS. AIDS by the numbers in 2020. 2022. URL: https://www.unaids.org/en
[11] Garc[a J, Rossi J. On the principal eigenvalue of some nonlocal diffusion problems. J Differential Equations, 2009, 246: 21-38
[12] Zhang G, Li W, Sun Y. Asymptotic behavior for nonlocal dispersal equations. Nonlinear Anal, 2010, 72: 4466-74
[13] Wu P, Wang X, Wang H. Threshold dynamics of a nonlocal dispersal HIV/AIDS epidemic model with spatial heterogeneity and antiretroviral therapy. Commun Nonlinear Sci Numer Simulat, 2022, 115: 106728
[14] Webb G. Theory of nonlinear age-dependent population dynamics. New York: Marcel Dekker Inc, 1985
[15] Engel K, Nagel R. One-parameter semigroups for linear evolution equations. New York: Springer, 2000
[16] Hale J. Asymptotic behavior of dissipative systems. Providence: American Mathematical Society, 1998
[17] Magal P, Webb G, Wu Y. On the basic reproduction numbers of reaction-diffusion epidemic models. SIAM J Appl Math, 2019, 79: 284-304
[18] Wu P, Zhao H. Mathematical analysis of an age-structured HIV/AIDS epidemic model with HAART and spatial diffusion. Nonlinear Anal RWA, 2021, 60: 103289
[19] Barreira L, Valls C. Ordinary differential equations, qualitative theory. Vol. 137. American Mathematical Society, 2001
[20] Smith H, Thieme H. Dynamical systems and population persistence. Providence: American Mathematical Society, 2011
[21] Smith H, Zhao X. Robust persistence for semi-dynamical systems. Nonlinear Anal: Theory Methods Appl, 2001, 47: 6169-79
[22] Yang J, Jin Z, Xu F. Threshold dynamics of an age-space structured SIR model on heterogeneous environment. Appl Math Lett, 2019, 96: 68-74
[23] Zhao G, Ruan S. Spatial and temporal dynamics of a nonlocal viral infection model. SIAM J Appl Math, 2018, 78(4): 1954-80
[24] Liu L, Xu R, Jin Z. Global dynamics of a spatial heterogeneous viral infection model with intracellular delay and nonlocal diffusion. Appl Math Model, 2020, 82: 150-67
[25] Wu P. Dynamics of a delayed integro-differential HIV infection model with multiple target cells and nonlocal dispersal. Eur Phys J Plus, 2021, 136: 117-47
[26] Wang X, Yang J. Dynamics of a nonlocal dispersal foot-and-mouth disease model in a spatially heterogeneous environment. Acta Math Sci, 2021, 41B: 552-72
[27] Pazy A. Semigroups of linear operators and applications to partial differential equations. New York: Springer, 1983
[28] Webb G. Theory of nonlinear age-dependent population dynamics. New York: Marcel Dekker Inc, 1985
[29] Engel K, Nagel R. One-parameter semigroups for linear evolution equations. New York: Springer, 2000
[30] Hale J. Asymptotic behavior of dissipative systems. Providence: American Mathematical Society, 1998
[31] Magal P, Webb G, Wu Y. On the basic reproduction numbers of reaction-diffusion epidemic models. SIAM J Appl Math, 2019, 79: 284-304
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(12201557)、浙江省属高校基本科研业务费专项资金(GK249909299001-20)资助项目.
{{custom_fund}}