带启动时间的休假流体模型的止步策略分析

王硕, 徐秀丽

应用数学学报 ›› 2018, Vol. 41 ›› Issue (6) : 846-857.

PDF(473 KB)
PDF(473 KB)
应用数学学报 ›› 2018, Vol. 41 ›› Issue (6) : 846-857. DOI: 10.12387/C2018066
论文

带启动时间的休假流体模型的止步策略分析

    王硕1, 徐秀丽2
作者信息 +

The Balking Strategies of Fluid Vacation Model with Setup Time

    WANG Shuo1, XU Xiuli2
Author information +
文章历史 +

摘要

本文主要对具有启动时间和休假可中断策略的流体排队模型进行经济学分析.假设当流体到达系统时,以其观察到的缓冲器状态为依据来计算个体净收益,进而决定是否进入缓冲器排队.基于以上条件,对该模型从经济学角度展开分析,在完全可视和几乎可视两种情况下分别讨论了:当只考虑个体收益时流体的止步策略及单位时间内社会收益达到最优时流体的止步策略.通过对该排队模型进行相关分析,给个体和决策者提出相应合理化建议,以实现收益最优.

Abstract

This paper mainly analyzes the fluid model with setup time and interruptible vacation strategy economically. Assuming that the fluid will be able to calculate the net benefits of the individual based on the states of the buffer once it reaches the system, and then decide whether to enter the buffer. Based on the above conditions, the balking strategies are discussed in both fully observable case and almost observable case considering fluid individual benefits and maximum social benefits per unit time. This paper attempts to make a reasonable proposal for individual and policy makers to realize the optimal benefits through the correlation analysis of this model.

关键词

流体排队 / 启动时间 / 休假中断 / 止步策略

Key words

fluid queue / setup time / interruptible vacation / balking strategies

引用本文

导出引用
王硕, 徐秀丽. 带启动时间的休假流体模型的止步策略分析. 应用数学学报, 2018, 41(6): 846-857 https://doi.org/10.12387/C2018066
WANG Shuo, XU Xiuli. The Balking Strategies of Fluid Vacation Model with Setup Time. Acta Mathematicae Applicatae Sinica, 2018, 41(6): 846-857 https://doi.org/10.12387/C2018066

参考文献

[1] Bischof W. Analysis of M/G/1 Queues with Setup Times and Vacations under Six Different Service Disciplines. Queueing Systems, 2001, 39:265-301
[2] 徐秀丽, 高红, 田乃硕. 对带启动时间和可变服务率的M/M/1休假排队的分析. 应用数学学报, 2008, 31(4):692-701(Xu X, Gao H, Tian N. Analysis for the M/M/1 Vacation Queue with Setup Times and Variable Service Rate. Acta Mathematicae Applicatae Sinice, 2008, 31(4):692-701)
[3] Edelson N, Hildebrand D. Congestion Tolls for Poisson Queueing Processes. Econometrica, 1975, 43:81-92
[4] Burnetas A, Economou A. Equilibrium Customers Strategies in a Single Server Markovian Queue with Setup Times. Queueing Systems, 2007, 56(3):213-228
[5] Economou A, Kanta S. Equilibrium Balking Strategies in the Observable Single-server Queue with Breakdowns and Repairs. Operations Research Letters, 2008, 36:696-699
[6] Sun W, Guo P, Tian N. Equilibrium Threshold Strategies in Observable Queueing Systems with Setup/Closedown Times. Central European Journal of Operations Research, 2010, 18:241-268
[7] Liu W, Ma Y, Li J. Equilibrium Threshold Strategies in Observable Queueing Systems under Single Vacation Policy. Applied Mathematical Modelling, 2012, 36(12):6186-6202
[8] Zhang F, Wang J, Liu B. Equilibrium Balking Strategies in Markovian Queues with Working Vacations. Applied Mathematical Modelling, 2013, 37:8264-8282
[9] 李乐. 带有可变系统速率的排队经济学模型的均衡分析. 北京:北京交通大学硕士学位论文, 2014(Li L. Equilibrium Analysis in the Model for Economics of Queues with Variable System Rates. Beijing:Master Dissertation of Beijing Jiaotong University, 2014)
[10] 刘杰. 带有伯努利休假的排队经济学模型的均衡分析. 北京:北京交通大学硕士学位论文, 2016(Liu J. Equilibrium Analysis for Economics-based Queues with Bernoulli Vacation. Beijing:Master Dissertation of Beijing Jiaotong University, 2016)
[11] Vijayalakshmi T, Thangaraj V. On a Fluid Model Driven by an M/M/1 Queue with Catastrophe. International Journal of Information & Management Sciences, 2012, 23(23):217-228
[12] Xu X, Geng J, Liu M, Guo H. Stationary Analysis for the Fluid Model Driven by the M/M/c Working Vacation Queue. Journal of Mathematical Analysis and Applications, 2013, 403(2):423-433
[13] Vijayashree K, Anjuka A. Stationary Analysis of a Fluid Queue Driven by an M/M/1 Queue with Working Vacation. Quality Technology Quantitative Management, 2016:1-22
[14] 徐秀丽, 宋晓凤, 靖欣, 马双凤. PH/M/1排队系统驱动的流模型. 系统科学与数学, 2017, 37(3):838-845(Xu X, Song X, Jing X, Ma S. Fluid Model Driven by a PH/M/1 Queue. Journal of Systems Science and Mathematical Sciences, 2017, 37(3):838-845)
[15] Economou A, Manou A. Strategic Behavior in an Observable Fluid Queue with an Alternating Service Process. European Journal of Operational Research, 2016, 254:148-160
[16] 王金亭. 排队博弈论基础. 北京:科学出版社,2016(Wang J. The Basis of Queuing Game Theory. Beijing:Science Press, 2016)

基金

国家自然科学基金(No:11201408)资助项目.
PDF(473 KB)

341

Accesses

0

Citation

Detail

段落导航
相关文章

/