一类变指数基尔霍夫型方程的无穷多解

张申贵

应用数学学报 ›› 2018, Vol. 41 ›› Issue (6) : 801-810.

PDF(338 KB)
PDF(338 KB)
应用数学学报 ›› 2018, Vol. 41 ›› Issue (6) : 801-810. DOI: 10.12387/C2018062
论文

一类变指数基尔霍夫型方程的无穷多解

    张申贵
作者信息 +

Infinitely Many Solutions for a Class of Kirchhoff-type Equation with Variable Exponent

    ZHANG Shengui
Author information +
文章历史 +

摘要

本文研究带有各向异性px)-Laplace算子的基尔霍夫型方程Dirichlet边值问题

其中Ω是RNN ≥ 3)中具有光滑边界的有界区域,fx,u)∈CΩ×R,R),∂xi u=∂u/∂xi,i=1,2,…,N,且Mit):R+→R+Ht):R→R和pix):Ω→R为连续函数.当非线性项在零点附近次线性:增长时,运用临界点理论中的Clark定理获得了新的多重解存在性结果.

Abstract

In this paper, we investigate the following Dirichlet boundary value problem for Kirchhoff-type equation involving the anisotropic p(x)-Laplacian operator


where Ω⊂ RN (N ≥ 3)is a bounded domain with smooth boundary, f(x, u) ∈ C(Ω×R, R), ∂xiu=∂u/∂xi, i=1, 2, …, N, Mi(t):R+ → R+, H(t):R → R and pi(x):Ω → R are continuous functions. When the nonlinearity has a sublinear growth near zero, some new results for existence of multiplicity of solutions are obtained by using the Clark's theorem in critical point theory.

关键词

基尔霍夫型方程 / Dirichlet边值问题 / 各向异性p(x)-Laplace算子 / 临界点理论

Key words

kirchhoff-type equation / Dirichlet boundary value problem / anisotropic p(x)-Laplacian operator / critical point

引用本文

导出引用
张申贵. 一类变指数基尔霍夫型方程的无穷多解. 应用数学学报, 2018, 41(6): 801-810 https://doi.org/10.12387/C2018062
ZHANG Shengui. Infinitely Many Solutions for a Class of Kirchhoff-type Equation with Variable Exponent. Acta Mathematicae Applicatae Sinica, 2018, 41(6): 801-810 https://doi.org/10.12387/C2018062

参考文献

[1] Ruzicka M. Electrorheologial Fluids:Modeling and Mathematial Throry. Berlin:Springer-Verlag, 2000
[2] Zhikov V V. On variational problems and nonlinear elliptic equations with nonstandard growth conditions. Journal of Mathematical Sciences, 2011, 173(5):463-570
[3] Chen Y, Levine S, Rao M. Variable exponent, Linear Growth Functionals in Image Restoration. Siam Journal on Applied Mathematics, 2006, 66(4):1383-1406
[4] Fan X L, Zhang Q H, Zhao D. Eigenvalues of p(x)-Laplacian Dirichlet problem. Journal of Mathematical Analysis and Applications, 2005, 302(2):306-317
[5] Fan X L. On nonlocal p(x)-Laplacian Dirichlet problems. Nonlinear Anal., Theory Methods Appl., 2010, 72:3314-3323
[6] Fan X L. Existence and uniqueness for the p(x)-Laplacian Dirichlet problems. Mathematische Nachrichten, 2011, 284(11):1435-1445
[7] Chabrowski J, Fu Y Q. Existence of solutions for p(x)-Laplace problems on a bounded domain. Journal of Mathematical Analysis and Applications, 2005, 306:604618
[8] Diening L, Harjulehto P, Hasto P, Ruzicka M. Lebesgue and Sobolev spaces with variable exponents. Berlin:Springer-Verlag, 2011
[9] Alves C O, Liu S B. On superlinear p(x)-Laplacian equations in RN. Nonlinear Analysis, Theory Methods Applications, 2010, 73:2566-2579
[10] Rǎdulescu V D, Zhang B L. Morse theory and local linking for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Nonlinear Analysis, Real World Applications, 2014, 17(1):311-321
[11] Mihailescu M, Pucci P, Rǎdulescu V D. Eigenvalue problems for anisotropic quasi-linear elliptic equations with variable exponent. Journal of Mathematical Analysis and Applications, 2008, 340:687-698
[12] Mihailescu M, Stancu-Dumitru D. Anisotropic quasilinear elliptic equations with variable exponent. Journal of the Korean Mathematical Society, 2012, 49(6):687-698
[13] Boureanu M M, Pucci P, Rǎdulescu V D. Multiplicity of solutions for a class of anisotropic elliptic equations with variable exponent. Complex Variables Elliptic Equations, 2011, 56:755-767
[14] Fan X L. On nonlocal p (x)-Laplacian equations. Nonlinear Analysis, 2010, 73(10):3364-3375
[15] Fan X L. Anisotropic variable exponent Sobolev spaces and p (x)-Laplacian equations. Complex Variables Elliptic Equations, 2011, 56:623-642
[16] Chung N T, Toan H Q. On a class of anisotropic elliptic equations without Ambrosetti-Rabinowitz type conditions. Nonlinear Analysis, Real World Applications, 2014, 16(16):132-145
[17] Ji C. An eigenvalue of an anisotropic quasilinear elliptic equation with variable exponent and Neumann boundary condition. Nonlinear Analysis, Theory Methods Applications, 2009, 71(10):4507-4514
[18] Ding L, Li L, Bisci G M. Existence of three solutions for a class of anisotropic variable exponent problems. Upb Sci Bull, 2015, 7:41-52
[19] Afrouzi G A, Mirzapour M, Radulescu V D. Qualitative analysis of solutions for a class of anisotropic elliptic equations with variable exponent. Proceedings of the Edinburgh Mathematical Society, 2015, 11(3):1-20
[20] Chipot M, Lovat B. Some remarks on non local elliptic and parabolic problems. Nonlinear Analysis, Theory Methods Applications, 1997, 30:4619-4627
[21] Zhang Z T, Perera K. Sign changing solutions of Kirchoff type problems via invariant sets of descent flow. Journal of Mathematical Analysis and Applications, 2006, 317:456-463
[22] Zhang Z T, Sun Y M. Existence and multiplicity of solutions for nonlocal systems with Kirchhoff type. Acta Mathematicae Applicatae Sinica (English Series), 2016, 32(1):35-54
[23] Liu Z L, Wang Z Q. On Clark's theorem and its applications to partially sublinear problems. Ann I H Poincare AN, 2015, 32(5):1015-1037
[24] Kajikiya R. A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. Journal Functional Analysis, 2005, 225(2):352-370

基金

国家自然科学基金(31260098)和中央高校基本科研业务费专项基金(31920180041)资助项目.

PDF(338 KB)

330

Accesses

0

Citation

Detail

段落导航
相关文章

/