
一类变指数基尔霍夫型方程的无穷多解
Infinitely Many Solutions for a Class of Kirchhoff-type Equation with Variable Exponent
本文研究带有各向异性p(x)-Laplace算子的基尔霍夫型方程Dirichlet边值问题
其中Ω是RN(N ≥ 3)中具有光滑边界的有界区域,f(x,u)∈C(Ω×R,R),∂xi u=∂u/∂xi,i=1,2,…,N,且Mi(t):R+→R+,H(t):R→R和pi(x):Ω→R为连续函数.当非线性项在零点附近次线性:增长时,运用临界点理论中的Clark定理获得了新的多重解存在性结果.
In this paper, we investigate the following Dirichlet boundary value problem for Kirchhoff-type equation involving the anisotropic p(x)-Laplacian operator
where Ω⊂ RN (N ≥ 3)is a bounded domain with smooth boundary, f(x, u) ∈ C(Ω×R, R), ∂xiu=∂u/∂xi, i=1, 2, …, N, Mi(t):R+ → R+, H(t):R → R and pi(x):Ω → R are continuous functions. When the nonlinearity has a sublinear growth near zero, some new results for existence of multiplicity of solutions are obtained by using the Clark's theorem in critical point theory.
基尔霍夫型方程 / Dirichlet边值问题 / 各向异性p(x)-Laplace算子 / 临界点理论 {{custom_keyword}} /
kirchhoff-type equation / Dirichlet boundary value problem / anisotropic p(x)-Laplacian operator / critical point {{custom_keyword}} /
国家自然科学基金(31260098)和中央高校基本科研业务费专项基金(31920180041)资助项目.
/
〈 |
|
〉 |