基于矩和L矩的三参数I型广义Logistic分布的参数估计

韩雪, 程维虎

应用数学学报 ›› 2017, Vol. 40 ›› Issue (3) : 331-344.

PDF(390 KB)
PDF(390 KB)
应用数学学报 ›› 2017, Vol. 40 ›› Issue (3) : 331-344. DOI: 10.12387/C2017028
论文

基于矩和L矩的三参数I型广义Logistic分布的参数估计

    韩雪1, 程维虎2
作者信息 +

Parameter Estimations for 3-parameter Type I Generalized Logistic Distribution by Methods of Moments and L-moments

    HAN Xue1, CHENG Weihu2
Author information +
文章历史 +

摘要

广义Logistic分布是一族重要的分布,被广泛地应用于生物学、医学、金融管理学,以及气象、水文、地质等领域.迄今为止,对于Logistic分布,统计学者已给出诸多的统计推断理论和方法,以及众多应用成果.令人遗憾的是,对应用非常广泛的广义Logistic分布,特别是具有位置、刻度和形状参数的三参数I型广义Logistic分布的研究还有待深入,该分布的应用还需进一步开发和利用.本文利用矩法和L矩法讨论三参数I型广义Logistic分布的参数估计,给出两种估计形式下参数的估计方程;证明了在一定的条件下,估计方程的解存在、唯一,且渐近正态地相合于真实参数的结论.通过计算机模拟,比较不同参数、不同样本容量下两种估计的估计效果.

Abstract

The generalized Logistic distribution is an important distribution,and widely used in biology,medicine,financial management,meteorology,hydrology,geology and other fields.So far,many statistical scholars have proposed many theories and methods of statistical inference,and a wide range of applications for the Logistic distribution.Unfortunately,the Logistic distribution,especially the type I generalized Logistic distribution with locationscale-shape parameter,needs further research,the application of this distribution needs more exploration and exploitation.We discussed the parameter estimations for 3-parameter type I generalized Logistic distribution using methods of moments and L moments,provided two parameter estimate equations,proved the existence,uniqueness and asymptotically normal consistency of the solution of the estimate equations under some conditions in this paper.We compared the estimated results about the two parameter estimations,in cases of different parameters,different sample size by simulation.

关键词

I型广义Logistic分布 / 矩估计 / L矩估计 / 渐近正态性 / 相合性 / 计算机模拟

Key words

type I generalized Logistic distribution / moment estimation / L-moment estimation / asymptotic normality / consistency

引用本文

导出引用
韩雪, 程维虎. 基于矩和L矩的三参数I型广义Logistic分布的参数估计. 应用数学学报, 2017, 40(3): 331-344 https://doi.org/10.12387/C2017028
HAN Xue, CHENG Weihu. Parameter Estimations for 3-parameter Type I Generalized Logistic Distribution by Methods of Moments and L-moments. Acta Mathematicae Applicatae Sinica, 2017, 40(3): 331-344 https://doi.org/10.12387/C2017028

参考文献

[1] Balakrishnan N. Handbook of the Logistic Distribution. New York:Marcel Dekker Inc., 1982
[2] Dubey S D. A New Derivation of the Logistic Distribution. Naval Res. Logist. Quart., 1969, 16:37-40
[3] Davidson R R. Some Properties of a Family of Generalized Logistic Distributions. Statistical Climatology, Developments in Atmospheric Science 13, Ikeda S et al.(ed.), New York:Evier, 1980
[4] George E O, Ojo M O. On a Generalization of the Logistic Distribution. Annals of the Institute of Statistical Mathematics A, 1980, 32:161-169
[5] Ojo M O, Olapade A K. On a Six-parameter Generalized Logistic Distributions. Kragujevac J. Math., 2004, 26:31-38
[6] George E O, Mudholkar G S. A Characterization of the Logistic Distribution by a Sample Median. Ann. Inst. Statist. Math., 1981, 33:125-129
[7] Arak M M, Serge B P. On the Distribution of Order Statistics from Generalized Logistic Samples. METRON-International Journal of Statistics, 2004, LXⅡ(1):63-71
[8] Rasool M T, Arshad M, Ahmad M I. Estimation of Generalized Logistic Distribution by Probability Weighted Moments. Pakistan Journal of Applied Science, 2002, 2(4):485-487
[9] Rasool M T, Arshad M, Ahmad M I. Generalized Logistic Distribution:an Application to the Maximum Annual Rainfalls. Pakistan Journal of Applied Science, 2002, 2(8):843-844
[10] Zelterman D. Parameter Estimation in the Generalized Logistic Distribution. Computational Statistics and Data Analysis, 1987, 5:177-184
[11] Balakrishnan N, Leung M Y. Order Statistics, from the type I Generalized Logistic Distribution. Commun. Statist. Simula, 1988, 17:25-50
[12] Balakrishnan N, Leung M Y. Means, Variances, and Covariances of Order Statistics, BLUE's for the Type I Generalized Logistic Distribution, and some Applications. Commun. Statist. Simula, 1988, 17:51-84
[13] Muna R Alkasasbeh, Mohammad Z Raqab. Estimation of the Generalized Logistic Distribution Parameters:Comparative Study. Statistical Methodology, 2008, 5:1-18
[14] Essam A Amin. Bayesian and non-Bayesian Estimation from type I Generalized Logistic Distribution based on Lower Record Values. Journal of Applied Sciences Research, 2008, 8(1):118-126
[15] Ali Meshgi, Davar Khalili. Comprehensive Evaluation of Regional Flood Frequency Analysis by L-and LH-moments. Ⅱ. Development of LH-moments Parameters for the Generalized Pareto and Generalized Logistic Distributions. Stoch Environ Res Risk Assess, 2009, 23:137-152
[16] Ani Shabri. Fitting the Generalized Logistic Distribution by LQ-moments. Applied Mathematical Sciences, 2011, 5(54):2663-2676
[17] 森口繁一, 宇田川鍷久, 一松信. 数学公式Ⅲ. 东京:岩波书店, 2002(Moriguchi Shigekazu, Udagawa Kanehisa, Ichimatsu Shin. Mathematical Formula Ⅲ. Tokyo:Iwanami Press, 2002)
[18] 周勇. 广义估计方程估计方法. 北京:科学出版社, 2013(Zhou Y. Generalized Estimating equation methods. Beijing:Science Press, 2013)
[19] Ashquith W H. L-moments and TL-moments of the Generalized Lambda Distribution. Computational Statistics & Data Analysis, 2007, 51:4484-4496
[20] 森口繁一, 宇田川鍷久, 一松信. 数学公式Ⅱ. 岩波书店, 2002(Moriguchi Shigekazu, Udagawa Kanehisa, Ichimatsu Shin. Mathematical Formula Ⅱ. Tokyo:Iwanami Press, 2002)

基金

国家统计局科研(2015LY86),山东省自然科学基金(ZR2016AM01)和济南大学科研基金(XKY1612)资助项目.

PDF(390 KB)

449

Accesses

0

Citation

Detail

段落导航
相关文章

/