新的全局收敛的混合共轭梯度法

王宇平, 游兆永

应用数学学报 ›› 1995, Vol. 18 ›› Issue (4) : 629-634.

PDF(334 KB)
PDF(334 KB)
应用数学学报 ›› 1995, Vol. 18 ›› Issue (4) : 629-634. DOI: 10.12387/C1995078
研究简报

新的全局收敛的混合共轭梯度法

    王宇平1, 游兆永2
作者信息 +
文章历史 +

摘要

于无约束最优化问题共轭梯度法是通过如下的迭代序列来逼近f(x)的极小点,xk+1=xk+ak+1Sk (2).

引用本文

导出引用
王宇平, 游兆永. 新的全局收敛的混合共轭梯度法. 应用数学学报, 1995, 18(4): 629-634 https://doi.org/10.12387/C1995078

参考文献

[1] D.Touati-Ahmed and C.Storey.Efficient Hybrid Conjugate Gradient Techniques,JOTA,1990,64 (2):373-397.
[2] Fletcher,R.and C.M.Reeves.Function Minimization by conjugate Gradients,Computer Journal,1964,7:143-154.
[3] E.Polak,and G.Ribiere.Note sur La Convergence des Methodes de Directions Conjuguées,Revue Francaise,Information et Recherche Operationelle,1969,16:35-43.
[4] M.J.D.Powell.Restart Procedures for the Conjugate Gradient Method,Mathematical Programming,1977,12:241-254.
[5] D.F.Shanno.Globally Convergent Conjugate Gradient Algorithms,Mathematical programming,1985,33:61-67.
[6] D.Touati-Ahmed and C.Storey.Globally Convergent Hybrid Conjugate Gradient Methods,Mathematics Research Report No.196,Department of Mathematics,Loughborough University of Technology,Loughborough,Leicestershire,England,1986
[7] D.F.Shanno.On the Convergence of a New Conjugate Gradient Algorithm,SIAM.J.Numerical Analysis,1978,15(6):1247-1257.
[8] M.J.D.Powell.Nonconvex Minimization calculations and the conjugate Gradient Method,Report No.DAMTP 1983/NA14,Department of Applied Mathematics and Theoretical Physics,University of Cambridge,Cambridge,England,1983.
[9] M.Al-Baali.Descent Property and Global Convergence of the Fletcher-Reeves Method with Inexact Line Search,IMA Journal of Numerical Analysis,1985,5:121-124.
[10] 陈开周,王孔明.一个新的连分式算法及其收敛性,计算数学,1988,10(1):35-43.

基金

西安电子科技大学科学基金
PDF(334 KB)

193

Accesses

0

Citation

Detail

段落导航
相关文章

/