大步长、低精度实时仿真积分算法是根据某些应用领域尤其武器研制实际需要而提出来的.目的一般都是为了检验所设计的装置的操作性质.在微分方程(组)求近似解中采用大步长积分是为了加快积分速度, 达到超时要求.而所求解的低精度是基于实时仿真系统的特点.
Abstract
This paper has constructed a class of explicit linear:4-step methods of order 3, and proved their absolute stable range theoretically. In an eigenvalue system withquite large variation. in range of a real-time simulation, the integration speed of this class of methods, is 3 to 7 times faster than that of the practical methods of Adams of order 3.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Lambert, J. D. Computational Methods in Ordinary Differential Equations, New York, Wiley, 1973.
[2] 武汉大学、山东大学计算数学教研室编:计算方法, 人民教育出版社, 1979年4月.
[3] C. W.吉尔著, 费景高等译, 常微分方程初值问题的数值解法.科学出版社, 北京, 1978年.
[4] 祝楚恒、袁兆鼎, 常微分方程数值积分的计算稳定性, 计算数学, 2 (1980), 77-89.
[5] Gerald Cook and Ching-Fang Lin.Comparison of a local linearization algorithm with standard numerical integration methods for real time simulation. IEEE mansactions on indus:rial electronics and control inttrumenration. IECI-27:3(1980), 129-132.
[6] 许淞庆编著, 常微分方程稳定性理论, 上海科学技术出版社, 上海, 1962年.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}