本文利用泛函分析的方法,借助于Schauder的不动点定理和矩阵测度的性质,对系统(1.1)的周期解的存在性进行了讨论.给出一个可以直接从系统(1.1)的右端函数性质来判别其周期解存在的定理.
Abstract
In this paper, the periodic system
x=A(t,x)+b(t,x)
is considered, where the n×n matrix A(t,x) and the,n-vector b(t,x) are continuous in(t,x)∈R×Rn,and A(t+ω,x)=A(t,x);b(t+ω,x)=b(t,x), Using the method of functional analysis, we prove that the above system has ω-periodic solution and give sufficient conditions to guarantee the existence of the unique ω-periodic solution for the following systems.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Lasota, A., Opial, Z., Surles solutions periodiques des equations differentielles Ordinaires, Ann. Polon. Math.,16(1964), 69-94.
[2] Krasnoselskii M. A., The Operator of Translation along Trajectories of Differential Equations, lzdat. Nauka,Moscow, 1966.
[3] 王联,王慕秋,高维周期耗散系统中的一个平稳振荡定理,中国科学,A辑,7(1982),607-614.
[4] Vidyasagar, M., Nonlinear Systems Analysis, Prentice-Hall. Inc., 1978.
[5] Reissig R., Sasone G. and Conti R., Nonlinear Differential Equations of Higher order, Noordhoff, Inter. Pub.Leyden, 1974.
[6] 秦元勋,王慕秋,王联,运动稳定性理论与应用,科学出版社,1981.
[7] Lassale J. and Lefschetz S., Stability by Lyapunov's Direct Method With Application, Acad. Press, New York.1961.
[8] Sansone, G. and Conti, R., Non-linear Differential Cquation Pergamon, Oxford-Macmillan. New York, 1964.
[9] Φ. P.甘特马赫尔著,柯召译,矩阵论(上册),高等教育出版社,北京,1955.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}