[1] Bang, H., Tsiatis, A. A. Median regression with censored cost data. Biometrics, 58(3): 643-649(2002)
[2] Buhamra, S. S., Al-Kandari, N. M., Ahmed, S. E. Nonparametric inference strategies for the quantile functions under left truncation and right censoring. J. Nonparametr. Stat., 19(4-5): 189-198(2007)
[3] Cai, J., Kim, J. Nonparametric quantile estimation with correlated failure time data. Lifetime Data Anal., 9(4): 357-371(2003)
[4] Cai, Z. Estimating a distribution function for censored time series data. J. Multivariate Anal., 78(2): 299-318(2001)
[5] Cai, Z. Regression quantiles for time series. Econometric Theory, 18: 169-192(2002)
[6] Cheng, J.-Y., Huang, S.-C., Tzeng, S.-J. Quantile regression methods for left-truncated and right-censored data. J. Stat. Comput. Simul., 86(3): 443-459(2016)
[7] Chernozhukov, V., Hong, H. Three-step censored quantile regression and extramarital affairs. J. Amer. Statist. Assoc., 97(459): 872-882(2002)
[8] Doukhan P. Mixing: properties and examples. Springer Science & Business Media, New York, 2012
[9] El Ghouch, A., Van Keilegom, I. Local linear quantile regression with dependent censored data. Statist. Sinica, 19: 1621-1640(2009)
[10] Fan, J., Gijbels, I. Local polynomial modelling and its applications. Chapman and Hall, London, 1996
[11] Fan, J., Yao, Q. Nonlinear Time Series. Springer, New York, 2003
[12] Frumento, P., Bottai, M. An estimating equation for censored and truncated quantile regression. Comput. Statist. Data Anal., 113: 53-63(2017)
[13] Gannoun, A., Saracco, J., Yu, K. Nonparametric prediction by conditional median and quantiles. J. Statist. Plann. Inference, 117(2), 207-223(2003)
[14] Hall, P., Heyde, C. C. Martingale Limit Theory and Its Application. Academic Press, New York, 1980
[15] He, S., Yang, G. Estimation of regression parameters with left truncated data. J. Statist. Plann. Inference, 117: 99-12(2003)
[16] Iglesias-Pérez, M. C. Strong representation of a conditional quantile function estimator with truncated and censored data. Statist. Probab. Lett., 65(2): 79-91(2003)
[17] Iglesias-Pérez, C., González-Manteiga, W. Strong representation of a generalized product-limit estimator for truncated and censored data with some applications. J. Nonparametr. Stat., 10(3): 213-244(1999)
[18] Ji, S., Peng, L., Cheng, Y., Lai, H. Quantile regression for doubly censored data. Biometrics, 68(1): 101-112(2012)
[19] Knight, K. Limiting distributions for l1 regression estimators under general conditions. Ann. Statist., 26(2): 755-770(1998)
[20] Koenker, R., Bassett, G. J. Regression quantiles. Econometrica, 46: 33-50(1978)
[21] Koenker, R. Quantile Regression. Cambridge University Press, Cambridge, 2005
[22] Kohler, M., Tent, R. Nonparametric quantile estimation using surrogate models and importance sampling. Metrika, 83(2): 141-169(2020)
[23] Li, R., Peng, L. Quantile regression for left-truncated semicompeting risks data. Biometrics, 67(3): 701-710(2011)
[24] Lipsitz, S. R., Ibrahim, J. G. Estimation with correlated censored survival data with missing covariates. Biostatistics, 1: 315-327(2000)
[25] Liang, H. Y., de Uña-Álvarez, J., Iglesias-Pérez, M. C. Asymptotic properties of conditional distribution estimator with truncated, censored and dependent data. Test, 21(4): 790-810(2012)
[26] Sankaran, P. G., Unnikrishnan Nair, N. Nonparametric estimation of hazard quantile function. J. Nonparametr. Stat., 21(6): 757-767(2009)
[27] Shen, P. S. A weighted quantile regression for left-truncated and right-censored data. J. Stat. Comput. Simul., 84(3): 596-604(2014)
[28] Volkonskii, V. A., Rozanov, Y. A. Some limit theorems for random functions. Theor. Probability Appl., 4(2): 178-197(1959)
[29] Wang, H. J., Wang, L. Locally weighted censored quantile regression. J. Amer. Statist. Assoc., 104(487): 1117-1128(2009)
[30] Xu, H. X., Chen, Z. L., Wang, J. F., Fan, G. L. Quantile regression and variable selection for partially linear model with randomly truncated data. Statist. Papers, 60(4): 1137-1160(2019)
[31] Xu, H. X., Fan, G. L., Chen, Z. L., Wang, J. F. Weighted quantile regression and testing for varyingcoefficient models with randomly truncated data. AStA Adv. Stat. Anal., 102(4): 565-588(2018)
[32] Yin, G., Cai, J. Quantile regression models with multivariate failure time data. Biometrics, 61: 151-161(2005)
[33] Yu, K., Jones, M. Local linear quantile regression. J. Amer. Statist. Assoc., 93(441): 228-237(1998)
[34] Zhou, W. A weighted quantile regression for randomly truncated data. Comput. Statist. Data Anal., 55(1): 554-566(2011)