Acta Mathematicae Applicatae Sinica(English Series) >
Solutions of Ginzburg-Landau Theory for Atomic Fermi Gases Near the BCS-BEC Crossover
Received date: 2008-12-18
Revised date: 2015-03-14
Online published: 2015-06-15
Supported by
Supported by the National Natural Science Foundation of China (No.11201415); Program for New Century Excellent Talents in Fujian Province University (No. JA14191).
We are concerned with a time-dependent Ginzburg-Landau equations come from the superfluid atomic Fermi-gases near the Feshbach resonance from the fermion-boson model. We obtain the global existence and uniqueness of solutions to the TDGL equations near the BCS-BEC crossover.
Shu-hong CHEN, Bo-ling GUO . Solutions of Ginzburg-Landau Theory for Atomic Fermi Gases Near the BCS-BEC Crossover[J]. Acta Mathematicae Applicatae Sinica(English Series), 2015 , 31(3) : 665 -676 . DOI: 10.1007/s10255-015-0492-2
[1] Aranson, I., Kramer, L. The would of the complex Ginzburg-Landau equation. Rev. Mod. Phys., 74: 99-143 (2002)
[2] Baranov, M.A., Petrov, D.S. Low-energy collective excitations in a superfluid trapped Fermi gas. Phy. Rev. A, 62: 041601(R)(2000)
[3] de Gennes, P.G. Superconductivity of Metals and Alloys. Addisom-Wesley, Reading, MA,1998; Abrikosov, A.A. Fundamentals of the Theory of Metals. Elsevier-Science Ltd., New York, 1988
[4] de Melo, C.A.R.Sa, Randeria, M., Engelbrecht, J.R. Crossover from BCS to Bose superconductivity: Transition temperature and time-dependent Ginzburg-Landau theory. Phys. Rev. Lett., 71: 3202-3205 (1993)
[5] De Palo, S., Castelloni, C., Dicastro, C., Chakraverty, B.K. Effective action for superconductiors and BCS-Bose crossover. Phys. Rev. B, 60: 564-573 (1999)
[6] Drechsler, M., Zwerger, W. Crossover from BCS-superconductivity to Bose-condensation. Ann. Phys., 504(1): 15-23 (1992)
[7] Henry, D. Geometric theory of semilinear parabolic equation. Spring-Verlag, Berlin, 1981
[8] Holland, M., Kokkelmans, S.J.J.M.F., Chiofalo, M.L., Walser, R. Resonance superfluidity in a quantum degenerate Fermi gas. Phys. Rev. Lett., 87(12): 120406 (2001)
[9] Machida, M., Koyama, T. Time-dependent Ginzburg-Landau theory for atomic Fermi gases near the BCS-BEC crossover. Phy. Rev. A, 74: 033603 (2006)
[10] Ohashi, Y., Griffin, A. BCS-BEC crossover in a gas of Fermi atoms with a Feshbach resonance. Phys. Rev. Lett., 89: 130402 (2002)
[11] Pazy, A. Semigroups of linear operators and applications to partial differential equation. Spring-Verlag, Berlin, 1983
[12] Tempere, J., Wouters, M., Devreese, J.T. Path-integral mean-field description of the vortex state in the BEC-to-BCS crossover. Phys. Rev. A, 71: 033631 (2005)
[13] Timmermans, E., Furuya, K., Milonni, P.W., Kerman, A.K. Prospect of creating a composite Fermi-Bose superfluid. Phys. Lett. A, 285(3-4): 228-233 (2001)
[14] Wouters, M., Tempere, J., Devreese, J.T. Path integral formulation of the tunneling dynamics of a superfluid Fermi gas in an optical potential. Phys. Rev. A, 70: 013616 (2004)
/
〈 |
|
〉 |