[1] Briand, Ph., Delyon, B., Hu, Y., Pardoux, E., Stoica, L. Lp- solutions of backward stochastic differential equations. Stochastic Process. Appl., 108: 109-129(2003)
[2] Chen, Z., Epstein, L. Ambiguity, risk, and asset returns in continuous time. Econometrica, 70: 1403-1443(2002)
[3] Chen, Z., Chen, T., Davison, M. Choquet expectation and Peng’s g-expectation. The Annals of Probability, 33(3): 1179-1199(2005)
[4] Chen, S., Li, X., Zhou, X. Y. Stochastic linear quadratic regulators with inde nite control weight costs. SIAM J. Control Optim., 36: 1685-1702(1998)
[5] Campbell, S. L. On positive controllers and linear quadratic optimal control problems. Internat. J. Control, 36: 885-888(1982)
[6] Duffie, D., Epstein, L. G. Stochastic differential utility. Econometrica, 60: 353-394(1992)
[7] Hu, Y., Zhou, X.Y. Constrained stochastic LQ control with random coefficients, and application to portfolio selection. SIAM J. Control Optim., 44: 444-466(2005)
[8] Heemels, W. P., van Eijndhoven, S., Stoorvogel, A. A. Linear quadratic regulator problem with positive controls. Internat. J. Control, 70: 551-578(1998)
[9] Ji, S., Zhou, X. Y. A maximum principle for stochastic optimal control with terminal state constraints, and its applications. Communications in Information and Systems, 6(4): 321-337(2006)
[10] El Karoui, N., Peng, S., Quenez, M.C. Backward stochastic differential equations in finance. Math. Financ., 7: 1-71(1997)
[11] El Karoui, N., Peng, S., Quenez, M. A dynamic maximum principle for the optimization of recursive utilities under constraints. The Annals of Applied Probability, 11(3): 664-693(2001)
[12] D.G. Luenberger, Optimization by Vector Space Methods. John Wiley and Sons, New York, 1969
[13] Li, X., Zhou, X.Y., Lim, A.E.B. Dynamic mean-variance portfolio selection with noshorting constraints. SIAM J. Control Optim., 40: 1540-1555(2002)
[14] Markowitz, H. Portfolio selection. The Journal of Finance, 7: 77-91(1952)
[15] Markowitz, H. Portfolio selection: efficient diversification of investments, Cowles Foundation for Research in Economics at Yale University. Monograph 16 John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1959
[16] Pachter, M. The linear-quadratic optimal control problem with positive controllers. Internat. J. Control, 32: 589-608(1980)
[17] Pardoux, E., Peng, S. Adapted solution of a backward stochastic differential equation. Syst. Control Lett., 14: 55-61(1990)
[18] Peng, S. Backward stochastic differential equations and applications to optimal control. Appl. Math. Optim., 27: 125-144(1993)
[19] Peng, S. Nonlinear expectations, nonlinear evaluations and risk measures. Stochastic Methods in Finance, Lecture Notes in Math., Vol. 1856. Springer, Berlin, 2004, 165-253
[20] Schroder, M., Skiadas, C. Optimal consumption and portfolio selection with stochastic differential utility. Journal of Economic Theory, 89(1): 68-126(1999)
[21] Yong, J., Zhou, X. Stochastic controls: Hamiltonian systems and HJB equations. Vol. 43. Springer-Verlag, New York, 1999
[22] Yong, J. A Stochastic Linear Quadratic Optimal Control Problem with Generalized Expectation. Stochastic Analysis and Applications, 26: 1136-1160(2008)
[23] Zhou, X.Y., Li, D. Explicit efficient frontier of a continuous-time mean-variance portfolio selection problem, in Control of Distributed Parameter and Stochastic Systems. Springer US, 323-330, 1999
[24] Williams, N. On dynamic principal-agent problems in continuous time, Working paper, http://www.ssc.wisc.edu/nwilliam/dynamic-pa1.pdf., 2008
[25] Zhang, W., Zhang, L. A BSDE approach to stochastic linear quadratic control problem. Optim. Control Appl. Meth., 42(4): 1206-1224(2021)
[26] Zhang, L. Optimal Control of Foward-backward Stochastic Differential Equations. Science Press, Beijing, 2019