Robin Coefficient Inversion Problem of Variable Coefficient Heat Conduction Equation

LIU Fanli, Xie Jinxin, Yang Tao

Acta Mathematicae Applicatae Sinica ›› 2021, Vol. 44 ›› Issue (4) : 574-588.

PDF(461 KB)
PDF(461 KB)
Acta Mathematicae Applicatae Sinica ›› 2021, Vol. 44 ›› Issue (4) : 574-588. DOI: 10.12387/C2021041

Robin Coefficient Inversion Problem of Variable Coefficient Heat Conduction Equation

  • LIU Fanli1, Xie Jinxin2, Yang Tao2
Author information +
History +

Abstract

In this paper, based on the nonlocal boundary conditions, the Robin coefficient of one kind of parabolic equation with variable coefficients is determined, the Robin coefficient is only related to time.Here the first variational formula is given, the uniqueness is proved by using the variational formula, second time discrete model is given, based on linear variational form of discretization, a series of a prior estimate are derived, the existence of weak solutions is proved, and it’s error is analyzed.

Key words

uniqueness / existence of weak / error analysis / Robin coefficients

Cite this article

Download Citations
LIU Fanli, Xie Jinxin, Yang Tao. Robin Coefficient Inversion Problem of Variable Coefficient Heat Conduction Equation. Acta Mathematicae Applicatae Sinica, 2021, 44(4): 574-588 https://doi.org/10.12387/C2021041

References

[1] 陈清华, 徐曼曼, 庞立, 刘泽功, 关维娟. 第一类边界条件下的松散煤体非稳态传热反问题研究. 上海交通大学学报, 2014, 48(12):1809-1814(CHEN Q H, XU M M, PANG L, LIU Z G, GUAN W J. Study on the unsteady inverse heat conduction problem of loose coal bulk in first kind boundary condition. Journal of Shanghai Jiaotong University, 2014, 48(12):1809-1814)
[2] 常师贞, 张学仁. 半直线上第一类边界条件下波动方程混合问题的公式解. 太原工业大学学报, 1987(02):96-105(CHANG S Z, ZHANG X R. The formula solution of mixed wave equation problem underboundary condition on half line. Journal of Taiyuan University of Technology, 1987(02):96-105)
[3] 赵围围, 杨国英. 带Dirichlet边界的椭圆方程组正解的存在性和不存在性. 河北北方学院学报(自然科学版), 2010, 26(06):1-3(ZHAO W W, YANG G Y. Existence and Nonexistence of Positive Solutions to Elliptic Equation System with Dirichlet Boundary Value. Journal of Hebei North University (Natural Science Edition), 2010, 26(06):1-3)
[4] 郝娅楠, 黄永艳. 带有Neumann边界的Kirchhoff问题无穷多径向解的存在性. 云南民族大学学报(自然科学版), 2018, 27(03):212-215(HAO Y N, HUANG Y Y. Existence of infinitely many radial solutions to a Kirchhoff equation with Neumann boundary conditions. Journal of Yunnan Minzu University (Natural Sciences Edition), 2018, 27(03):212-215)
[5] 胡妤涵. 具有Neumann边界的耦合非线性薛定谔方程组能量估计. 河南科技大学学报(自然科学版), 2016, 37(01):9-6-100+10(HU Y H. Energy Estimate for Coupled Nonlinear Schrodinger Equations with Neumann Boundary. Journal of He nan University of Science Technology (Natural Science), 2016, 37(01):96-100+10)
[6] 张强, 曾艳, 李桂花, 张黔川. 带Neumann边界条件的Extended Fisher-Kolmogorov系统的定态分歧. 四川师范大学学报(自然科学版), 2014, 37(02):188-191(ZHANG Q, ZENG Y, LI G H, ZHANG Q C. Steady State Bifurcation of Extended Fisher-Kolmogorov System with Neumann Boundary Condition. Journal of Sichuan Normal University (Natural Science), 2014, 37(02):188-191)
[7] 孙仁斌. 带奇异项的拟线性抛物方程组在第二类边界条件下解的猝灭. 中南民族大学学报(自然科学版), 2018, 37(02):133-136(SUN R B. Quenching of Solutions of Quasilinear Parabolic System with Singular Term under Second Boundary Conditions. Journal of South-central University for Nationalities (Natural Science Edition), 2018, 37(02):133-136)
[8] 张慧萍. 一类抛物型方程Robin边界系数的反演. 东南大学, 2015(ZHANG H P. Inversion of Boundary Coefficients of a Parabolic Equation Robin. Southeast University, 2015)
[9] 张寒苏. 热传导方程系统边界Robin系数的反演. 东南大学, 2017(ZHANG H S. Inversion of Robin coefficients on the boundary of heat conduction equation system. Southeast University, 2017)
[10] 丁胜培, 杨宏奇. Robin反问题的TV正则化. 中山大学学报(自然科学版), 2010, 49(03):24-27+41(DING S P, YANG H Q. TV regularization of the Robin inverse problem. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(03):24-27+41)
[11] 师晋红, 陈文, 傅卓佳. 边界粒子法结合正则化技术求解Robin反问题. 计算力学学报, 2014, 31(06):694-701(SHI J H, CHEN W, FU Z J. Boundary particle method coupled with regularization technique for Robin inverse problem. Chinese Journal of Computational Mechanics, 2014, 31(06):694-701)
[12] Kostin B A. The inverse problem of recovering the source in aparabolic equation under a condition of nonlocal observation. Sbornik:Mathematics, 2013, 204(10):1391-1434
[13] Huzyk N M. Nonlocal Inverse Problem for a Parabolic Equation with Degeneration. Ukrainian Mathematical Journal, 2013, 65(6):847-863
[14] Sabitov K B, Sidorov S N. Inverse problem for degenerate parabolic-hyperbolic equation with nonlocal boundary condition. Russian Mathematics.2015, 59(1):39-50
[15] Anderson D R. Existence of three solutions for a first-order problem with nonlinear nonlocal boundary conditions. Journal of Mathematical Analysis Applications, 2013, 408(1):318-323
[16] Hao T C, Cong F Z. An efficient method for solving a class of nonlocal boundary value problems and error estimate. Applied Mathematics Letters, 2017, 72:42-49
[17] Yevick D, Thomson D J. Nonlocal boundary conditions for finite-difference parabolic equation solvers. Journal of the Acoustical Society of America, 1999, 106(1):143-150
[18] Slodicka M, Van Keer R. 2000 Determination of the convective transfer coefficient in elliptic problems from a nonstandard boundary condition Simulation. Modelling, and Numerical Analysis, SIMONA, 2000ed J Mary ska, M T uma and J Sembera (Liberec:Technical University of Liberec), 13-20
[19] Slodicka M, Keer R V. Recovery of the convective transfer coefficient in parabolic problems from a non-standard boundary condition. International Conference on Applied Theoretical Mathematics. World Scientific and Engineering Society Press, 2000
[20] Chaabane S, Jaoua M. Identification of Robincoefficients by the means of boundary measurements. Inverse Problems, 1999, 15(6):1425-1438
PDF(461 KB)

537

Accesses

0

Citation

Detail

Sections
Recommended

/