Principal Measure and Uniform Distributional Chaos of Weighted Shift Operators on Σ(X)

LU Tianxiu, ZHU Peiyong, WU Xinxing

Acta Mathematicae Applicatae Sinica ›› 2015, Vol. 38 ›› Issue (1) : 1-7.

PDF(293 KB)
PDF(293 KB)
Acta Mathematicae Applicatae Sinica ›› 2015, Vol. 38 ›› Issue (1) : 1-7. DOI: 10.12387/C2015001

Principal Measure and Uniform Distributional Chaos of Weighted Shift Operators on Σ(X)

  • LU Tianxiu1, ZHU Peiyong2, WU Xinxing2
Author information +
History +

Abstract

Assume that X is a normed linear space (not necessarily complete) and Σ(X)=XN0. In this paper, it is proved that for weighted shift operator Bw: Σ(X)→Σ(X), (x0, x1, …)→(w0x1, w1x2, …) Bw is distributionally ε-chaotic for any 0<ε X)=2 and the principal measure of Bw is 1. Besides, this property is preserved under iterations.

Key words

Weighted shift operator / uniform distributional chaos / principal measure

Cite this article

Download Citations
LU Tianxiu, ZHU Peiyong, WU Xinxing. Principal Measure and Uniform Distributional Chaos of Weighted Shift Operators on Σ(X). Acta Mathematicae Applicatae Sinica, 2015, 38(1): 1-7 https://doi.org/10.12387/C2015001

References

[1] Li T Y, Yorke J A. Periodic three implies chaos. Amer. Math. Monthly, 1975, 82: 985-992
[2] Devaney R L. An Introduction to Chaotic Dynamical Systems, 2nd ed. Redwood City, CA: Addison-Wesley Publishing Company, 1989
[3] Wiggins S. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Texts in Applied Mathematics, 2. Berlin: Springer-Verlag, 1990
[4] Piórek J. On the generic chaos in dynamical systems. Univ. Iagel. Acta. Math., 1985, 25: 293-298
[5] Snoha L. Dense chaos. Comment. Math. Univ. Carolin., 1992, 33(4): 747-752
[6] Li S H. ω-Chaos and topological entropy. Trans. Amer. Math. Soc., 1993, 399(1): 243-249
[7] Schweizer B, Smítal J. Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Amer. Math. Soc., 1994, 344(2): 737-754
[8] Wang L D, Huang G F, Huan S M. Distributional chaos in a sequence. Nonlinear Anal., 2007, 67(7): 2131-2136
[9] Akin E, Kolyada S. Li-Yorke sensitivity. Nonlinearity, 2003, 16(4): 1421-1433
[10] Oprocha P, Wilczyński P. Shift spaces and distributional chaos. Chaos, Solitons and Fractals, 2007, 31(2): 347-355
[11] Schweizer B, Sklar A, Smítal J. Distributional (and other) chaos and its measurement. Real Anal. Exch., 2000, 26(2): 495-524
[12] Oprocha P. A quantum harmonic oscillator and strong chaos. J. Phys. A: Math. Gen., 2006, 39(47): 14559-14565
[13] Wu X X, Zhu P Y. The principal measure of a quantum harmonic oscillator, J. Phys. A: Math. Theor., 2011, 44: 505101 (6pp)
[14] Fu X C, You Y C. Chaotic sets of shift and weighted shift maps. Nonlinear Analysis, 2009, 71: 2141-2152
[15] Wu X X, Zhu P Y. Chaos in a class of non-constantly weighted shift operators. Internat. J. Bifur. Chaos, 2013, 26(8): 1421-1429
[16] Bayart F, Grivaux S. Frequently hypercyclic operators. Trans. Amer. Math. Soc., 2006, 358 (11): 5083-5117
[17] Bés J, Peris A. Disjointness in hypercyclicity. J. Math. Anal. Appl., 2007, 336 (1): 297-315
[18] Bermúdez T, Bonilla A, Martínez-Giménez F, Peris A. Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl., 2011, 373(11): 83-93
[19] Belhadj M, Betancor J J. Hankel convolution operators on entire functions and distributions. J. Math. Anal. Appl., 2002, 276(1): 40-63
[20] Grosse-Erdmann K G, Peris A. Frequently dense orbits. C. R. Math. Acad. Sci. Paris, 2005, 341 (2): 123-128
[21] Martínez-Giménez F. Chaos for power series of backward shift operators. Proc. Amer. Math. Soc., 2007, 135(6): 1741-1752
[22] Wu X X, Zhu P Y. On the equivalence of four chaotic operators. Appl. Math. Lett., 2012, 25(3): 545-549
[23] Wang L D, Huan S M, Huang G F. A note on Schweizer-Smital chaos. Nonlinear Analysis, 2008, 68(6): 1682-1686

PDF(293 KB)

371

Accesses

0

Citation

Detail

Sections
Recommended

/