
Principal Measure and Uniform Distributional Chaos of Weighted Shift Operators on Σ(X)
LU Tianxiu, ZHU Peiyong, WU Xinxing
Acta Mathematicae Applicatae Sinica ›› 2015, Vol. 38 ›› Issue (1) : 1-7.
Principal Measure and Uniform Distributional Chaos of Weighted Shift Operators on Σ(X)
Assume that X is a normed linear space (not necessarily complete) and Σ(X)=XN0. In this paper, it is proved that for weighted shift operator Bw: Σ(X)→Σ(X), (x0, x1, …)→(w0x1, w1x2, …) Bw is distributionally ε-chaotic for any 0<ε X)=2 and the principal measure of Bw is 1. Besides, this property is preserved under iterations.
Weighted shift operator / uniform distributional chaos / principal measure {{custom_keyword}} /
[1] Li T Y, Yorke J A. Periodic three implies chaos. Amer. Math. Monthly, 1975, 82: 985-992
[2] Devaney R L. An Introduction to Chaotic Dynamical Systems, 2nd ed. Redwood City, CA: Addison-Wesley Publishing Company, 1989
[3] Wiggins S. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Texts in Applied Mathematics, 2. Berlin: Springer-Verlag, 1990
[4] Piórek J. On the generic chaos in dynamical systems. Univ. Iagel. Acta. Math., 1985, 25: 293-298
[5] Snoha L. Dense chaos. Comment. Math. Univ. Carolin., 1992, 33(4): 747-752
[6] Li S H. ω-Chaos and topological entropy. Trans. Amer. Math. Soc., 1993, 399(1): 243-249
[7] Schweizer B, Smítal J. Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Amer. Math. Soc., 1994, 344(2): 737-754
[8] Wang L D, Huang G F, Huan S M. Distributional chaos in a sequence. Nonlinear Anal., 2007, 67(7): 2131-2136
[9] Akin E, Kolyada S. Li-Yorke sensitivity. Nonlinearity, 2003, 16(4): 1421-1433
[10] Oprocha P, Wilczyński P. Shift spaces and distributional chaos. Chaos, Solitons and Fractals, 2007, 31(2): 347-355
[11] Schweizer B, Sklar A, Smítal J. Distributional (and other) chaos and its measurement. Real Anal. Exch., 2000, 26(2): 495-524
[12] Oprocha P. A quantum harmonic oscillator and strong chaos. J. Phys. A: Math. Gen., 2006, 39(47): 14559-14565
[13] Wu X X, Zhu P Y. The principal measure of a quantum harmonic oscillator, J. Phys. A: Math. Theor., 2011, 44: 505101 (6pp)
[14] Fu X C, You Y C. Chaotic sets of shift and weighted shift maps. Nonlinear Analysis, 2009, 71: 2141-2152
[15] Wu X X, Zhu P Y. Chaos in a class of non-constantly weighted shift operators. Internat. J. Bifur. Chaos, 2013, 26(8): 1421-1429
[16] Bayart F, Grivaux S. Frequently hypercyclic operators. Trans. Amer. Math. Soc., 2006, 358 (11): 5083-5117
[17] Bés J, Peris A. Disjointness in hypercyclicity. J. Math. Anal. Appl., 2007, 336 (1): 297-315
[18] Bermúdez T, Bonilla A, Martínez-Giménez F, Peris A. Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl., 2011, 373(11): 83-93
[19] Belhadj M, Betancor J J. Hankel convolution operators on entire functions and distributions. J. Math. Anal. Appl., 2002, 276(1): 40-63
[20] Grosse-Erdmann K G, Peris A. Frequently dense orbits. C. R. Math. Acad. Sci. Paris, 2005, 341 (2): 123-128
[21] Martínez-Giménez F. Chaos for power series of backward shift operators. Proc. Amer. Math. Soc., 2007, 135(6): 1741-1752
[22] Wu X X, Zhu P Y. On the equivalence of four chaotic operators. Appl. Math. Lett., 2012, 25(3): 545-549
[23] Wang L D, Huan S M, Huang G F. A note on Schweizer-Smital chaos. Nonlinear Analysis, 2008, 68(6): 1682-1686
/
〈 |
|
〉 |